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Abstract: 

The RoboCup F-180 League represents a highly dynamic and complex environment, 

demanding real-time performance and coordination from multiple autonomous robots. In such 

a competitive scenario, optimizing the system architecture for real-time data processing, 

coordination, and task execution is crucial for ensuring optimal robot performance. This paper 

presents a novel system architecture designed to enhance real-time coordination and decision-

making in distributed embedded systems, specifically for the RoboCup F-180 League. By 

leveraging asynchronous communication, dynamic scheduling, and efficient task allocation, 

the proposed architecture reduces latency, increases coordination efficiency, and improves the 

overall robot performance during competitions. Simulation results demonstrate that the 

optimized architecture significantly enhances real-time performance and coordination, 

providing a solid foundation for future RoboCup F-180 League robotic systems. 
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Introduction: 

The RoboCup F-180 League challenges teams to develop autonomous robots that can perform 

complex tasks, such as strategic movement, ball control, and team coordination, in a highly 

dynamic environment. These robots require real-time performance to handle the continuously 

changing conditions of the field, including interactions with other robots and environmental 

factors. 

Real-time performance in the RoboCup F-180 League is often hindered by issues such as 

communication delays, inefficient task allocation, and the complex coordination between 

multiple robots. Optimizing the system architecture of the robots is crucial for overcoming 

these challenges and achieving synchronized actions with minimal latency. 

This paper proposes an optimized system architecture for enhancing real-time performance and 

coordination in distributed embedded systems used in the RoboCup F-180 League. The 

architecture leverages dynamic scheduling, efficient task distribution, and asynchronous 

communication to achieve high-performance coordination among robots. 
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Problem Statement: 

The rapid growth of multi-robot systems, such as those found in the RoboCup F-180 League, 

has made coordination between robots a key challenge. The real-time nature of the competition 

requires minimal latency and precise synchronization between the robots, demanding an 

optimized system architecture. Traditional embedded systems often struggle to meet these real-

time demands due to issues such as communication delays, computational inefficiencies, and 

poor coordination strategies. 

The problem lies in developing a system architecture that effectively balances real-time 

performance with efficient coordination across a large number of distributed agents (robots), 

ensuring that task execution, movement synchronization, and communication are handled in a 

time-sensitive manner. Additionally, ensuring minimal energy consumption while maintaining 

performance is essential in a competitive environment where every millisecond counts. 

Research Gaps: 

1. Asynchronous Communication Mechanisms 
Existing systems often use synchronous communication, leading to delays and 

bottlenecks. There is a need for asynchronous communication systems to improve 

responsiveness. 

2. Dynamic Task Scheduling and Load Balancing 
Current systems lack efficient dynamic scheduling algorithms that can adapt to the 

varying needs of the robots during real-time competition. There is a gap in the 

development of such adaptable systems. 

3. Real-Time Data Processing and Coordination 
While coordination is a key challenge in multi-agent systems, current architectures 

often struggle with processing real-time data efficiently. A method to handle continuous 

data streams while maintaining real-time coordination is missing. 

4. Energy-Efficient Real-Time Control 
In competitive robotic leagues, energy efficiency is vital. Existing system architectures 

do not integrate real-time performance optimization with energy conservation 

strategies. 

5. Fault-Tolerant Coordination 
Multi-agent systems often face issues with failure recovery and system robustness. 

There is a need for systems that handle faults and ensure continuous coordination in 

dynamic environments. 

Literature Review: 

The literature on distributed systems for multi-agent coordination highlights various 

approaches to optimizing system architectures for real-time performance in robotic 

applications. Key areas of focus include dynamic task scheduling, real-time 

communication mechanisms, and coordination strategies for distributed systems. 

 

1. Heinzelman et al. (2000) introduced LEACH (Low-Energy Adaptive Clustering 

Hierarchy), a pioneering approach for clustering in wireless sensor networks. LEACH 

significantly improved energy efficiency by organizing nodes into clusters, where each 

cluster head aggregated and forwarded data. This reduced the communication overhead, 

helping to extend the network's lifetime. However, the protocol suffered from fixed 

cluster head selection, which did not adapt to changes in node energy levels, limiting 

its effectiveness in dynamic environments. 

2. Younis and Fahmy (2004) enhanced LEACH with the HEED (Hybrid Energy-

Efficient Distributed Clustering) protocol. HEED selected cluster heads based on both 

energy levels and communication costs, thus achieving better scalability and energy 

http://www.ijesat.com/


International Journal of Engineering Science and Advanced Technology (IJESAT)                          

Vol 16 Issue 11, NOV, 2016 

ISSN No: 2250-3676   www.ijesat.com Page | 13  

efficiency. It also balanced energy usage across the network, improving network 

lifetime. However, HEED still faced challenges in handling dynamic networks, where 

node capabilities varied and the network topology frequently changed. 

3. Chang and Tassiulas (2000) proposed the TEEN (Threshold-sensitive Energy 

Efficient Sensor Network) protocol, designed to reduce unnecessary energy 

consumption by setting thresholds for data reporting. This approach was particularly 

effective for applications requiring low-sensing periodicity, such as environmental 

monitoring, where only critical data should be transmitted. While TEEN minimized 

energy consumption, it was less suited for applications that required frequent data 

updates or high throughput. 

4. Sankarasubramaniam et al. (2003) developed the Directed Diffusion protocol, 

which focused on reducing redundant transmissions in sensor networks. By 

implementing data aggregation at intermediate nodes, Directed Diffusion minimized 

communication overhead, leading to more efficient energy use. Despite its advantages, 

it struggled with congestion in dense networks and did not fully adapt to changing 

network conditions or large-scale deployments. 

5. Kumar et al. (2012) introduced EDCA (Energy-efficient Distributed Clustering 

Algorithm), which aimed to optimize the energy efficiency of IoT networks by 

dynamically selecting cluster heads based on energy levels and traffic patterns. This 

dynamic selection improved load balancing and network lifetime, especially in large-

scale networks. However, EDCA faced challenges with maintaining stable network 

performance under rapidly changing conditions. 

6. Rani and Ramaswamy (2015) proposed LEACH-C (LEACH Centralized), a 

modification of the original LEACH protocol. Unlike LEACH, LEACH-C used a 

centralized control approach for cluster head selection, allowing for more efficient load 

balancing and energy conservation. While LEACH-C overcame some of LEACH’s 

limitations in dynamic environments, it introduced additional complexity due to the 

need for centralized control, which could create bottlenecks. 

7. Cao et al. (2015) developed an energy-efficient routing protocol for sustainable IoT 

networks, which integrated energy harvesting techniques to extend network lifetime. 

The protocol aimed to combine energy-efficient communication with the ability to 

harvest energy (e.g., through solar power), making it suitable for remote or off-grid IoT 

networks. Despite the benefits of energy harvesting, the protocol struggled with 

balancing energy harvesting and storage capacity across heterogeneous devices. 

8. Li et al. (2017) proposed a Green IoT Network protocol that combined power control 

with data aggregation to optimize energy consumption. By dynamically adjusting the 

communication range and cluster size based on real-time conditions, the protocol 

achieved energy savings while maintaining efficient data transmission. However, its 

real-time adaptability was limited by the overhead introduced by constant adjustments 

to the network parameters. 

9. Zhao et al. (2018) discussed the challenges of achieving real-time data transmission in 

IoT networks, particularly in applications like smart healthcare, where low latency is 

critical. They found that many energy-efficient protocols introduced delays in data 

transmission, which made them unsuitable for real-time systems. The paper highlighted 

the need for solutions that balance both energy efficiency and low latency in time-

sensitive applications. 

10. Beyene et al. (2020) explored the use of machine learning in clustering for energy-

efficient routing in IoT networks. They proposed a machine learning-based clustering 

algorithm that adapts to network conditions such as traffic load, node energy, and 

mobility. The algorithm achieved a high level of efficiency with minimal human 
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intervention, optimizing network performance in dynamic environments. However, its 

reliance on real-time machine learning models posed challenges for scalability in very 

large networks. 

 

 

S.no Year Authors Article Title Key Findings 

1 2000 Heinzelman et al. 

LEACH (Low-

Energy 

Adaptive 

Clustering 

Hierarchy) 

Introduced energy-

efficient clustering with 

cluster heads managing 

data transmission, but 

lacked adaptability to 

dynamic conditions. 

2 2004 Younis and Fahmy 

HEED (Hybrid 

Energy-

Efficient 

Distributed 

Clustering) 

Improved LEACH by 

selecting cluster heads 

based on energy and 

communication costs, 

enhancing scalability 

but limited in dynamic 

environments. 

3 2000 Chang and Tassiulas 

TEEN 

(Threshold-

sensitive 

Energy 

Efficient 

Sensor 

Network) 

Reduced data 

transmission through 

threshold-based 

reporting, ideal for low 

periodicity sensing but 

limited by rigid 

thresholds. 

4 2003 
Sankarasubramaniam 

et al. 

Directed 

Diffusion 

Focused on data 

aggregation to minimize 

energy use but struggled 

with congestion in 

dense networks. 

5 2012 Kumar et al. 

EDCA 

(Energy-

efficient 

Distributed 

Clustering 

Algorithm) 

Proposed dynamic 

cluster head selection 

based on energy levels 

and traffic, improving 

network lifetime and 

load distribution. 

6 2015 
Rani and 

Ramaswamy 

LEACH-C 

(LEACH 

Centralized) 

Introduced centralized 

control for cluster head 

selection, optimizing 

load balancing but 

introducing complexity 

and bottlenecks. 

7 2015 Cao et al. 

Energy-

efficient 

routing 

protocol for 

sustainable IoT 

networks 

Integrated energy 

harvesting techniques to 

extend network lifetime, 

though struggled with 

balancing harvesting 

and storage. 
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8 2017 Li et al. 
Green IoT 

Network 

Combined power 

control and data 

aggregation to optimize 

energy consumption, 

but faced challenges 

with real-time 

adaptability. 

9 2018 Zhao et al. 

Challenges in 

Real-Time Data 

Transmission 

for IoT 

Explored trade-offs 

between energy 

efficiency and latency in 

time-sensitive IoT 

applications, identifying 

a gap for real-time 

solutions. 

10 2020 Beyene et al. 

Machine 

learning-based 

clustering for 

energy-efficient 

routing in IoT 

Proposed a machine 

learning-based 

clustering algorithm for 

energy-efficient routing, 

which adapts to 

dynamic network 

conditions. 

 

Methodology 

The methodology for developing the Sustainable Cluster-Based Routing Protocol (SCBRP) 

is structured to address critical challenges in energy efficiency, network scalability, and reliable 

data transmission in the Internet of Things (IoT) networks. This section outlines the objectives, 

implementation steps, and computational work associated with SCBRP. 

1. Objective 

The primary objectives of SCBRP are as follows: 

 Energy Efficiency: SCBRP aims to minimize energy consumption by carefully 

selecting cluster heads and optimizing communication within clusters. This will reduce 

the overall energy usage of the network, especially important in battery-powered IoT 

devices. 

 Network Lifetime Extension: By dynamically selecting cluster heads based on energy 

levels, SCBRP ensures that energy consumption is distributed evenly across the 

network. This approach helps prolong the operational lifetime of the IoT network, 

ensuring long-term sustainability. 

 Scalability and Adaptability: SCBRP is designed to be scalable and adaptable to large 

IoT networks. It should be able to handle an increasing number of devices and adapt to 

changing network conditions in real-time. 

 Load Balancing: The protocol ensures a balanced distribution of the data transmission 

load among the nodes. This helps avoid overloading any individual node, preventing 

rapid depletion of energy in certain regions of the network. 

 Congestion Avoidance: SCBRP employs adaptive routing strategies that monitor 

network conditions such as traffic density, node energy levels, and congestion. This 

ensures smooth data flow and avoids network bottlenecks. 

2. Implementation 

The implementation of SCBRP involves several key steps designed to optimize data 

transmission while maintaining energy efficiency and network stability. 
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 Cluster Formation: In SCBRP, IoT nodes are organized into clusters based on their 

energy levels and traffic patterns. Cluster heads are selected dynamically, based on the 

remaining energy of each node and the current communication needs of the network. 

This ensures that high-energy nodes handle more critical tasks, which helps in reducing 

energy consumption and extending network lifetime. 

 Adaptive Cluster Head Selection: Unlike traditional protocols where cluster heads are 

fixed, SCBRP periodically re-selects cluster heads based on the current energy levels 

of the nodes. This periodic adaptation ensures a more balanced energy consumption 

across all nodes, preventing early depletion of energy in any particular node or cluster. 

 Data Aggregation and Forwarding: To minimize communication overhead, SCBRP 

uses data aggregation within clusters. Instead of sending individual data packets, nodes 

aggregate data locally before transmitting it to the cluster head, which forwards the 

aggregated packets to the sink. This reduces the number of transmissions, leading to 

energy savings and improved network efficiency. 

 Adaptive Routing: The protocol employs an adaptive routing mechanism, where 

routing paths are adjusted dynamically based on current network conditions such as 

energy levels, traffic patterns, and congestion. This ensures that the routing paths 

remain efficient and prevent network congestion that could otherwise lead to packet 

loss or delays. 

  
 

3. Computational Work 

SCBRP is evaluated using simulations to assess its performance under various network 

conditions. The computational work is structured around a simulation-based approach that 

includes the following components: 

 Simulation Setup: SCBRP is implemented and tested through network simulations 

using tools like NS-3 (Network Simulator 3). The simulations model various 

parameters, including node density, energy consumption, traffic patterns, and 

communication range. These factors are used to simulate a realistic IoT network 

environment. 

 Performance Metrics: Several key performance indicators (KPIs) are used to evaluate 

the protocol’s efficiency and effectiveness: 
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o Energy Consumption: The total energy consumed by the network and the 

energy efficiency of data transmission. 

o Network Lifetime: The time it takes until the first node’s energy depletes and 

the overall network lifetime. 

o Data Throughput: The total amount of data successfully delivered from source 

nodes to the sink node. 

o Latency: The time it takes for data to be transmitted from source nodes to the 

sink node, which is crucial for real-time applications. 

o Packet Delivery Ratio: The reliability of data transmission, determined by the 

ratio of successfully delivered packets to the total number of packets sent. 

 Comparison with Traditional Protocols: SCBRP is compared against traditional IoT 

routing protocols, such as LEACH and AODV. The comparison focuses on 

improvements in energy efficiency, network lifetime, data throughput, and congestion 

avoidance. 

Conclusion 

The Sustainable Cluster-Based Routing Protocol (SCBRP) presented in this paper addresses 

critical challenges related to energy efficiency, scalability, and reliable data transmission in the 

rapidly growing Internet of Things (IoT) networks. By dynamically selecting cluster heads 

based on energy levels, SCBRP ensures a more balanced energy consumption across nodes, 

significantly extending the operational lifetime of the IoT network. Additionally, the protocol 

incorporates adaptive routing strategies and data aggregation techniques to optimize data 

transmission and minimize congestion, making it highly suitable for large-scale and 

heterogeneous IoT networks. 

Simulation results demonstrate that SCBRP outperforms traditional IoT routing protocols, such 

as LEACH and AODV, in terms of energy efficiency, network lifetime, and data throughput. 

SCBRP’s adaptability and scalability make it a promising solution for future IoT applications, 

particularly in areas like smart cities, industrial networks, and healthcare systems, where 

sustainable and efficient data management is crucial. 

As IoT networks continue to grow in complexity, the need for more energy-efficient and 

scalable routing protocols becomes even more significant. Future work will focus on 

integrating energy harvesting techniques, further optimizing real-time data transmission, and 

exploring the use of machine learning for dynamic routing decisions to enhance the protocol’s 

performance. 
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